硬件层面,也就是所谓的硬件加速, CPU、GPU、FPGA、ASIC。CPU与GPU相比在大数据多任务处理上,肯定GPU更占优势。FPGA与GPU相比,在兼顾了灵活性的基础上,无论是计算能力和功耗性能上都要更强,缺点是性价比太低。ASIC是的,其他的硬件形态都是无法比拟的。
证明生成的过程中,约有60%的时间花在MSM上,其余时间由NTT/FTT主导。MSM和NTT都存在性能挑战,通常的解决办法:
●MSM可以在多线程上执行,从而支持并行处理。然而,当处理大型数据向量时,例如6700万个参数,乘法运算可能仍然很慢,并且需要大量的内存资源。此外,MSM存在可扩展性方面的挑战,即使在广泛并行化的情况下也可能保持缓慢。
为什么以太坊或者门罗是抵制ASIC的?看看大饼就知道了,主要是比较低成本的ASIC让以太坊社区预测到了ASIC机器未来可能占领以太坊网络,而以太坊网络开始的共识是PoW,和大饼一样。
早在2021年,英伟达就曾公开表示过“禁止使用转换层在其他硬件平台上运行基于CUDA的软件”,2024年3月,英伟达更是将其升级为“CUDA禁令”,直接添加在了CUDA的终用户许可协议中,已禁止用转译层在其他GPU上运行CUDA软件