在分析之前,我们先看一下ASIC(Application Specific Integrated Circuit),中文全称是“专用集成电路”。这里特别强调“专用”,“专用”意味着针对单一项目来说会更加有竞争力。相对比,GPU(显卡)是通用计算处理芯片,所以在单一项目上来说“专用”肯定比“通用”更有竞争力。
从算法的角度上来看,Aleo属于零知识证明(ZKP)赛道项目,复杂度是比大饼和以太坊算法都要复杂的。算法的核心计算我们之前也提过主要是MSM+NTT/FFT的计算,还会包含一些Hash运算。这些计算主要目的是为了生成零知识证明,而生成证明的速度直接会影响生态的体验。
●在算法过程中频繁的数据混洗使得NTT难以在计算集群中分布,无法并行计算,并且由于需要从大型数据集中加载和卸载数据,在硬件上运行时需要大量带宽。即使硬件操作很快,这可能也会导致速度变慢。例如,如果硬件芯片的内存为16GB或更少,那么在100GB的数据集上运行NTT将需要通过网络加载和卸载数据,这可能会大大降低操作速度。
为了打破英伟达一家独大的局面,前任全球芯片老大英特尔和多年老对手AMD对标CUDA都分别推出了OneAPI和ROCm,Linux基金会更是联合英特尔、谷歌、高通、ARM、三星等公司联合成立了民间号称“反CUDA联盟”的UXL基金会,以开发全新的开源软件套件,让AI开发者能够在基金会成员的任何芯片上进行编程,试图让其取代CUDA,成为AI开发者的开发平台。